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The occurrence of elastic turbulence and accompanying resistance anomalies in filtrational polymer solution 

flows is investigated. The critical value of the Weissenberg number is determined for a porous medium 

composed of spheres of the same size. 

One of the reasons for interest in the hydrodynamics of polymer solutions is the unusual behavior of 

solutions during flow through porous media. One of the effects observed here, namely, an abnormal rise in the 

filtrational resistance of polymer solutions as compared with the resistance of the solvent, has found wide application 

in enhancing of oil recovery [1, 2 ]. The most significant (up to two orders of magnitude) deviations of resistance 

from the Darcy law were observed for the flows of dilute solutions of polymers of high molecular weight whose 

viscosity is close to that of the solvent [3-8 ]. 

It has long been known that anomalies in the filtration of polymer liquids are associated with their elastic 

properties [4, 9 ]. However, investigators faced great difficulties when they tried to explain the mechanism 

responsible for the increase in the viscous dissipation in filtrational flows of polymer solutions [3, 10 ]. In the case 

of dilute solutions, investigations were also complicated by the absence of experimental techniques for determining 

the elastic characteristics of such liquids. Attempts were made to use for calculations elastic characteristics of the 

theory that are based on molecular models of dilute polymer solutions that assume the indivisibility of 
macromolecules in the solutions [7, 8, 11, 12 ]. However, it was shown experimentally that the critical values of 

dimensionless combinations of the Deborah number type introduced by means of these theories to describe the 

occurrence of filtration anomalies depend on the concentration of the solution. This fact is not surprising in light 

of data indicating a relation between the elastic properties of dilute solutions of high polymers and supermolecular 

structures typical of these solutions [13 ]. 

A considerable increase in understanding filtration anomalies was achieved upon investigating the flow of 

polymer solutions in simple models of pore channels, namely, channels with a periodically varying cross section 

[14, 15]. It was shown [16, 17] that growth in resistance during filtration of polymer solutions was caused by 

elastic turbulization of the flows. The criterion characterizing the occurrence of elastic turbulence was taken to be 

the Weissenberg number 

We - O v (1) 
d " 

Here O is the natural time of the liquid, i.e., the time of relaxation of elastic stresses with low frequencies 
of perturbations, and v and d are the characteristic velocity and dimension of the channel of variable cross section. 

For channels with a square cross section the critical value of the Weissenberg number was determined to be We* 

= 4.7. In this case the hydraulic diameter of the narrow section of the channel was used as the characteristic 

dimension, and the mean velocity in this section was used as the characteristic velocity [18 ]. Based on the results 

obtained, a technique was developed for measuring the natural time of polymer solutions of low concentration. It 
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TABLE I. Critical Weissenberg Number for the Flow of PEO Solutions in Packings of Equally Sized Spheres 

Reference E Dp, cm M [~/] t, ~ K We* A 

[5 ] 0.389 62.5.10 -4 4.106 - 24 1.60 2.6- 10 -3 262 

[31 

[7] 

[81 

0.372 

0.377 

0.368 

0.372 

0.377 

0.368 

0.372 

0.377 

0.011 

0.022 

0.045 

0.011 

0.022 

0.045 

0.011 

0.022 

0.05 

0.1 

0.019 

0.04 

9.4.105 

4.2.106 

9.7.105 

470 

1500 

2900 

2300 

2100 

25 

25 

25 

0.27 

3.28 

3.9.10 -2 

3.2.10 -2 

4.5.10 -2 

4.3.10 -2 

1.60 4.5- 10 -2 

6.4-10 -2 

3.3.10 -2 

2.65 

2.7.10 -2 

0.1 

0.1 

2.2.10 -2 

2.2- 10 -2 
2.41 

180 

180 

180 

150 

211 

turned out that the natural time for the solutions of nonelectrolyte polymers, in particular, aqueous solutions of 

polyethylene oxide (PEO), changes proportionally to the square root of the mass concentration of the solution C: 

O = K v'C-. (2) 

Here K is a coefficient that depends on the temperature of the solution and the characteristic viscosity of 

the polymer, determined at low shear rates, It/] 71 im[~r / -  rls)/(Crls ) ]. 
c 0,~, u 

The results obtained make it possible to pass to a discussion of polymer solution flows in more realistic 

models of natural oil containers than tubes of variable cross section - random packings of equally sized spheres 

as well as packings with spheres of variable size. For packings of equally sized spheres a large volume of factual 

material has been accumulated [3, 5, 7, 8 ]. As a rule, the molecular weight M or characteristic viscosity [~/] of the 

polymers used is given, as well as the mean size of the spheres Dp and the porosity of the packings E. Graphs yield 

the critical values of filtration velocity V0 or interstitial velocity V -- Vole at which filtration anomalies occur. In 

the case of packings of equally sized spheres the Weissenberg number can be introduced naturally on the basis of 

the quantities V and Dp. One expects that in such packings, just as in tubes of variable cross section, elastic 

turbulence arises at a certain We number (constant for different concentrations). This is indicated, in particular, 

by the inversely proportional dependence of the critical value of V/Dp on the square root of the concentration 

observed in filtration of aqueous solutions of PEO [7, 8 ] (together with relation (2)). However, this conclusion 

cannot be drawn on the basis of available experimental data. The values of the critical Weissenberg number We* 

based on these data and listed in Table 1 differ significantly in works published by different authors. 

There are two plausible explanations for this fact. First, in the works cited the polymers used are not always 

characterized adequately. Thus, when compiling Table 1, to estimate the natural time (the coeffident K in relation 
(2)) we used data of [18 ], where the values of K are given for aqueous solutions of PEO as functions of molecular 

weight and of characteristic viscosity at low shear rates. The values of [r/] were taken to be values presented in the 
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works discussed and probably not measured very accurately. In general, the determination of the characteristic 

viscosity is hardly a simple experimental problem. Equipment is required that would allow one to measure the 

viscosities of polymer solutions of extremely low concentration under conditions of nearly zero shear rates. Capillary 

viscosimeters, used, for example, in [3 ], do not comply with the indicated requirements; therefore, passage to the 

limit of zero shear rate and concentration in determining [7/] was done with the help of double geometric 

,extrapolation of viscosities. Such a procedure could introduce an appreciable error into the value of [~/]. Comparing 

the values of [r/] given in [3 ] with those presented in [19 ], which is specially devoted to the study of the depend- 

ences of viscosity on the shear rates of dilute solutions of PEO, we may conclude that the authors of [3 ] failed to 

determine accurately the characteristic viscosities of the polymers used. 

The other and, evidently, the main source for the scatter of the values of We* is the difference in the 

characteristics of the porous media themselves. Thus, in the works cited the authors assumed that they used random 

packings of equally sized spheres. Proceeding from data for filtration of Newtonian fluids, we may estimate the 

extent to which the sizes and shapes of the spherical particles were identical in [3, 5, 7, 8 ]. The resistance curves 

for filtration through packings of spheres are usually presented in Ergun dimensionless coordinates: 

Re = Dp V E (3) 
v 1 - E '  

e (4) 
L pF2 I -E  

Here Re is the Reynolds number, 2 is the resistance coefficient, v is the kinematic viscosity, L is the length 

over which the pressure drop AP is determined. At small Reynolds numbers the Darcy law holds, under which the 

law of the resistance of packings takes the form 

2 R e =  
Dp 

- -  ~ A .  

(1 k 
(5) 

Here k is the permeability of the packing, A is a dimensionless constant that depends on the properties 

of the porous medium. It is known that for random packings of equally sized spheres the values of A lie within 

150-180 [3, 20, 21 ]. These values were confirmed many times in experiments with rather large-sized spheres, 

when one could easily control their size and shape. Therefore, with a certain arbitrariness the variation of the 

quantity A within the indicated limits can be attributed to the random nature of the packing of spheres, and the 

porous media themselves can be considered similar. 

It is necessary to determine more precisely the size that should be taken as the characteristic dimension 

of the porous medium when we investigate the occurrence of elastic turbulence. In works devoted to the flow of 

polymer solutions in channels of variable cross section it was shown that the appearance of resistance anomalies is 

determined by the dimensions of the narrow portions of the channels [15, 22 ]. We may assume that such a situation 

also pertains to real porous media, where elastic turbulence occurs in the narrowest pore passages. It is difficult to 

determine the precise size of these passages but, considering geometrically similar porous media, e.g., random 

packings of equally sized spheres, we may use Dp as the characteristic dimension in the Weissenberg number for 
purposes of simplification. 

The last column of Table 1 lists the values of A for the packings of spheres used in experiments with PEO 

solutions. These values are estimates either from the given characteristics of the porous medium k, E, D O or from 

the resistance curves. In some publications these values are such that it is impossible to consider the porous media 

used as packings of equally sized particles and thus to compare the critical Weissenberg numbers of the occurrence 
of elastic turbulence. 

There is a distinct correlation between the values of We* and A in Table 1. The more the value of A exceeds 

the values typical for random packings of equally sized spheres, the smaller the critical Weissenberg number. This 
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TABLE 2. Sizes of Polystyrene Spheres According to Microscopy Data 

No. of the set 

3 

Number of spheres in the 

set 

30 

56 

30 

Dp, mm 

0.213 

0.300 

0.778 

Maximal deviation of size 

relative to Dp, % 

• 

___18 

_+4 

Sieves used, mm 

0.20 

0.25 

0.25 

0.35 

0.75 

0.85 

seems to signify that with a decrease in the permeability of packings, pore passages of increasingly smaller 

dimensions appear in porous media, precisely in which elastic turbulence occurs. 

To determine quantitatively the critical value of the Weissenberg number for the occurrence of filtration 

anomalies of polymer solutions in packings of equally sized spheres, an experiment was carried out. Moreover, an 

attempt was made to demonstrate the influence of nonuniformity in the size of the spheres on this effect. 

Packings of polystyrene spheres encased in cylindrical containers with wire screens were used. The 

construction of the containers of the packings coincided with that used in [3 ]. The diameter of the packing container 

D and the packing length L were selected so as to ensure convenient measurement of liquid flow rate and pressure 

drop, but so that boundary effects could be eliminated. Liquid escaped from a pressure tank, the liquid level in 

which could be varied. The pressure tank and the conveying hose were fitted with thermostatic water jackets. This 

made it possible to conduct experiments at a constant temperature within _0.5~ Using a set of graduated cylinders 

and a stopwatch, we measured the volumetric liquid flow rate Q. The pressure drop AP over the length L was 

measured with the help of piezometers. 

Special attention was paid to the preparation of polystyrene spheres. The requisite number of spheres were 

passed several times through two standard sieves whose hole size limited the size of the spheres from above and 

from below. Three sets of spheres were obtained that had a certain size which was controlled with the help of a 

measuring microscope by using samples of 30 or more spheres. Table 2 presents parameters of the homogeneous 

sets of spheres obtained. It is seen that sieving made it possible to obtain sets with a narrow size distribution. 

In a11, three packings were prepared. Two of these, containing spheres with Dp = 0.300 and 0.778 ram, 

were used for determining We* in polymer solution flows in porous media composed of equally sized spheres. The 

third packing contained a mixture of large and small spheres and was used for investigating the effect of size 

nonuniformity. The small spheres were selected of such a size that they could fill the spaces between the large 

spheres. Assuming for simplicity a tetrahedral packing, the diameter of a small sphere that can be inscribed in the 

cavity formed by four large spheres can be easily estimated to be 22.5~ of the diameter of the latter. 

Correspondingly, when the diameter of a large sphere is Dp -- 0.778 mm, a small sphere should have a size of 

0.180 mm. Unfortunately, the available set of sieves only permitted us to obtain spheres of a somewhat larger size 

with Dp -- 0.213 mm, which, however, is of no importance within the framework of a qualitative experiment. The 

ratio of the mumbers of spheres was selected in such a way that small spheres could fill all the spaces with excess. 

The numbers of small and large spheres were in the ratio of 5:1, with the large ones occupying 90 ~ of the overall 

volume of the spheres in the packing. 
The containers of packings were filled with spheres with the help of vibration. The porosity E was calculated 

from the volume of the liquid that could fill the packings. In packings of equally sized spheres E--  0.37, which 

agrees with data of [3 ]. The packing with spheres of nonuniform size had a somewhat smaller porosity of E = 0.34. 
After determination of E, experiments with Newtonian liquid flow through packings were conducted. Using 

the measured values of AP and the filtration velocity V 0 = 4Q/JrD 2 we determined the permeability, which was 
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Fig. 1. Resistance to Newtonian fluid flow through a packing of equally sized 

spheres: Dp-- 0.778 (1) and 0.300 mm (2). 

Fig. 2. Dependence of the relative pressure drop on the interstitial velocity for 

the flow of aqueous solutions of PEO, It/] -- 2300: C = 5.10 -5 (1), 10 -4 (2), 

2 �9 10 - 4  (3 ) ,  and 4.10 - 4  (4 ) ,  in a packing with Dp -- 0.300 mm. V, cm/sec. 
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Fig. 3. Critical Weissenberg number of the occurrence of elastic turbulence 

for the flow of aqueous solutions of PEO, [t/] = 2300, as a function of the 

concentration in packings of equally sized spheres: Dp = 0.778 (1) and 0.300 

mm (2). 

Fig. 4. Dependence of the relative pressure drop on the interstitial velocity 

for a PEO solution flow, [r/] = 2300, C = 3.10 -4, in packings with Dp = 0.778 

(1) and 0.300 (2) and in a packing with a mixture of spheres of two sizes (3). 
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equal to 7 .03"  10 -7, 4 . 8 0 . 1 0  -6, and 1.91- 10 - 6  c m  2 for the packings with D o = 0.300 and 0.778 mm and the packing 

with a mixture of spheres, respectively. The values of Re and 2 were calculated from Eqs. (3) and (4). The resistance 

curves for the packings of equally sized spheres are given in Fig. 1; the points cluster about the single curve ~ = 

A/Re, where A -- 164. We may assume that the packings used are really random packings of equally sized spheres. 

In the experiments we used solutions of PEO in distilled water. The value of It/] determined with the aid 
of a Zimma-Krothers viscosimeter was equal to 2300. The solutions were prepared identically as described in detail 

in [19 ]. With the help of channels of variable cross section [16 ], the natural time of solutions was measured at a 

working temperature of t = 22~ To prevent the degradation of the polymer solutions, measurements were made 
with a single passage of the liquid though the packings. 
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To determine the critical value of the interstitial velocity V* at which elastic turbulence occurs, it is 

convenient to present the results in the form of the dependence of the relative pressure drop AP/AP 0 on V. Here 

AP0 is the pressure drop in the flow of the solvent calculated from the Darcy law. Figure 2 presents relationships 
obtained for the flow of PEO solutions, [r/] = 2300, of different concentrations through a packing with Dp = 0.300 

mm. Upon the occurrence of elastic turbulence we observed a rather sharp deviation of the value of AP/AP 0 from 

the horizontal line corresponding to laminar flow. Similar relationships were also observed for a packing with Dp -- 

0.778 mm. Using a certain value of V*, the critical values of the Weissenberg number were calculated as functions 

of the mass concentration of the solutions (Fig. 3). The points cluster about the mean value We* = 0.16. With 

experimental accuracy the value of We* is a constant independent of the size of the spheres and the properties of 

the solutions. Since the porous media and the viscoelastic fluids used are rather fully characterized in the present 

work, we may regard the problem of determining the critical parameter responsible for the inception of elastic 

turbulence in random packings of equally sized spheres to be solved. 
To investigate the flow in a packing containing spheres of two sizes, we prepared a sufficient quantity of a 

PEO solution with a concentration of C = 3.10 -4  and determined its natural lime (9. We determined the critical 

values of the interstitial velocity for the flow of this solution through all three packings (Fig. 4). It turned out that 

the influence of the addition of small spheres is very great. Elastic turbulence in a packing with spheres of 

nonuniform size occurs at interstitial velocities close to the values for a medium with Dp = 0.300 mm. It may seem 

that there are no large spheres in such a packing even though they occupy almost the entire volume. 

The following qualitative explanation of this fact is possible. It was already noted that elastic turbulence 

of flows occurs first of all in the narrowest pore passages, where the maximum rates of deformation of the liquid 

are observed. When smatl spheres are added to a porous medium made up of large spheres, still smaller passages 
are formed in it. As a result, the deformation rate corresponding to the occurrence of elastic turbulence is attained 

in the narrow passages of a medium with a spreed of sizes at smaller values of V than in a medium with identical 

large spheres. 

N O T A T I O N  

O, natural time; v, characteristic velocity; d, characteristic size; We, Weissenberg number; C, mass 

concentration; K, coefficient in the empirical relation for (9; It/], characteristic viscosity based on the first 

Newtonian viscosity; Dp mean  size of spheres; E, porosity; V0, filtration velocity; V, interstitial velocity; *, critical 

value of a parameter; Re, Reynolds number; A, constant in the resistance law; 2, resistance coefficient; L, packing 

length; AP, pressure drop; v, kinematic viscosity; k, permeability; Q, volumetric liquid flow rate; D, packing 

diameter. 
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